Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
2nd International Conference on Electronics and Renewable Systems, ICEARS 2023 ; : 961-967, 2023.
Article in English | Scopus | ID: covidwho-2303023

ABSTRACT

With cyberspace's continuous evolution, online reviews play a crucial role in determining business success in various sectors, ranging from restaurants and hotels to e-commerce applications. Typically, a favorable review for a specific product draws in more consumers and results in a significant boost in sales. Unfortunately, a few businesses are using deceptive methods to improve their online reputation by using fake reviews of competitors. As a result, detecting fake reviews has become a difficult and ever-changing research field. Verbal characteristics extracted from review text, as well as nonverbal features such as the reviewer's engagement metrics, the IP address of the device, and so on, play an important role in detecting fake reviews. This article examines and compares various machine learning techniques for detecting deceptive reviews on various online platforms such as e-commerce websites such as Amazon and online review websites such as Yelp, among others. © 2023 IEEE.

2.
1st International Conference on Advanced Communication and Intelligent Systems, ICACIS 2022 ; 1749 CCIS:756-763, 2023.
Article in English | Scopus | ID: covidwho-2261118

ABSTRACT

This chapter is about the improvisation in the accuracy in COVID-19 detection using chest CT-scan images through K-Nearest Neighbour (K-NN) compared with Naive-Bayes (NB) classifier. The sample size considered for this detection is 20, for group 1 and 2, where G-power is 0.8. The value of alpha and beta was 0.05 and 0.2 along with a confidence interval at 95%. The K-NN classifier has achieved 95.297% of higher accuracy rate when compared with Naive Bayes classifier 92.087%. The results obtained were considered to be error-free since it was having the significance value of 0.036 (p < 0.05). Therefore, in this work K-Nearest Neighbor has performed significantly better than Naive Bayes algorithm in detection of COVID-19. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

3.
7th International Conference on Parallel, Distributed and Grid Computing, PDGC 2022 ; : 176-180, 2022.
Article in English | Scopus | ID: covidwho-2283508

ABSTRACT

The pandemic Covid-19 is a name coined by WHO on 31st December 2019. This devastating illness was carried on by a new coronavirus known as SARS-COV-2. Most of the research has focused on estimating the total number of cases and mortality rate of COVID-19. Due to this, people across the world were stressed out by observing the growing number of cases every day. As a means of maintaining equilibrium, this paper aims to identify the best way to predict the number of recovered cases of Coronavirus in India. Dataset was divided into two parts: training and testing. The training dataset utilised 70% of the dataset, and the testing dataset utilised 30%. In this paper, we applied 10 machine learning techniques i.e. Random Forest Classifier (RF), Naive Bayes (NB), Quadratic Discriminant Analysis (QDA), Gradient Boosting Classifier (GBM), Linear Discriminant Analysis (LDA), Logistic Regression (LR), K Neighbour Classifier (KNN), Decision Tree Classifier (DT), SVM - Linear and Ada-Boost Classifier in order to predict recovered patients in India. Our study suggests that Random Forest Classifier outperforms other machine learning models for predicting the recovered Coronavirus patients having an accuracy of 0.9632, AUC of 0.9836, Recall of 0.9640, Precision of 0.9680, F1 Score of 0.9617 and Kappa of 0.9558. © 2022 IEEE.

4.
2nd IEEE International Conference on Intelligent Technologies, CONIT 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2029208

ABSTRACT

In this paper, the relationship between COVID-19 Maximum Infection Rate (MIR) and the happiness indicators has been investigated for the prediction of Happiness Score of Countries using Random Forest (RF) algorithm. The per-formance of the proposed algorithm is also compared against five other algorithms such as Linear Regression (LR), Ada Boost Classifier (ABC), K-Nearest Neighbor (KNN), Gaussian Naive Bayes (NB) and Logistic Regression. The comparison of performance includes parameters like training accuracy, testing accuracy and computation time. It is clear from the observation that the proposed approach is superior to others. Then the parameters like MAE, MSE, RMSE, R2 Score, Adjusted R2 Score is calculated. This proposed algorithm can be used for other classification and regression work involving large amount of data with missing values like COVID- 19 datasets. © 2022 IEEE.

5.
12th International Conference on Innovations in Bio-Inspired Computing and Applications, IBICA 2021 and 11th World Congress on Information and Communication Technologies, WICT 2021 ; 419 LNNS:65-77, 2022.
Article in English | Scopus | ID: covidwho-1750563

ABSTRACT

Information content that is inaccurate, misleading, or whose source cannot be verified is fake news. This content could be created to purposely harm people’s reputations, deceive them, or draw attention to themselves. Since December 2019, the epidemic of coronavirus disease has sparked considerable alarm and has had a significant impact on people’s lives. Also, misinformation on COVID-19 is frequently spread on social media. This project aims to use Machine learning algorithms to recognize fraudulent news. For this, we use seven essential algorithms, namely Logistic regression, Naïve Bayes, Support Vector Machine (SVM), Neural Network (NN), K-Nearest Neighbours (KNN), Decision tree, and Random forest. We compared the results of all the algorithms stated above and found that neural networks and random forest achieved the highest accuracy of 83%. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

SELECTION OF CITATIONS
SEARCH DETAIL